TRENDS AND CHALLENGES IN TRAIL DESIGN

ODOT & FHWA Perspective

John M. Motl, P.E.

Ohio Department of Transportation, District 12 Modes Management Engineer

June 6, 2012

Before Design

- Preliminary Planning
- Determine logical termini
- Secure funding source
- Coordinate with oversight agency

Before Design

- Determine Logical Termini
 - Federal requirement
 - Development of preliminary plan

Determine Logical Termini

- Best to develop a master plan

- Determine Logical Termini
 - Best to develop a master plan

Before Design

- Determine Logical Termini
 - Typical termini
 - Connection to an existing trail
 - ◆Gap closure
 - ◆Park facility
 - ◆Designated bike route

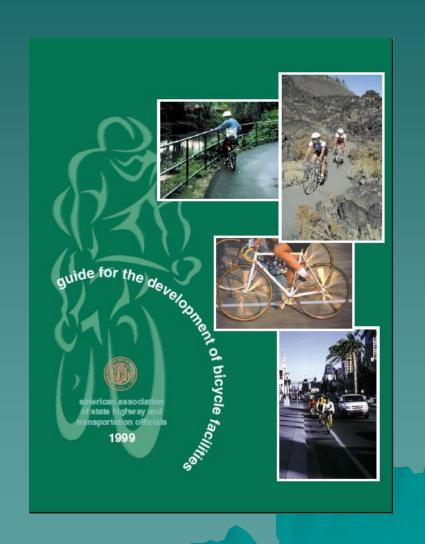
- Typical termini

◆Designated bike route

- Typical termini

◆Designated bike route

- Typical termini


◆Designated bike route

Design Considerations

- Remember: Rails-to-Trails are not always a fait accompli. Consider the following:
 - Typical section requirements
 - Drainage issues
 - Environmental issues
 - Right of Way
 - Utilities

- AASHTO
 "Guidelines for the
 Development of
 Bicycle Facilities,"
 (1999 or latest
 edition)
- New Edition coming in June, 2012

70 guide for the development of bicycle facilities

Many of the provisions being developed by the Regulatory Negotiation Committee on Outdoor Developed Areas, such as surface treatment, minimum path width, changes in the level surface, and passing space, will automatically be met in the construction of a path suitable for bicycle travel.

Once these provisions are adopted, they should be consulted when designing bicycle facilities.

What if an existing path is not accessible? Do as much as possible to remove the barriers. Good signing at the trail access points that identify situations that could be difficult to traverse (such as steep grade and cross slope, narrow width and uneven surface conditions) will help users determine for themselves whether to use the path.

 FHWA Publication No. FHWA-EP-01-027, "Best Practices Design Guide Part 2, Designing Sidewalks and Trails for Access," (2001)

- → FHWA Publication No. FHWA-EP-01-027, "Best Practices Design Guide Part 2, Designing Sidewalks and Trails for Access," (2001)
- ◆ AASHTO "Guidelines for the Development of Bicycle Facilities," (1999 or latest edition)
- OMUTCD "Ohio Manual of Uniform Traffic Control Devices (2012, Chapter 9)
- Additional References
 - ODOT Division of Planning Bike & Pedestrian Program web site
 www.dot.state.oh.us/Divisions/Planning/SPR/bicycle/Pages/default
 - .aspx

 - ODOT Local Technical Assistance Program website
 www.dot.state.oh.us/Divisions/Quality/LTAP/Pages/default.aspx
 - Local MPO (Metropolitan Planning Organization): NOACA, AMATS, SCATS, EDATA, etc.

Types of Bicycle Facilities

Bike Lane

Designated area within the roadway established with pavement markings and signs along corridors where bicycles share the street with vehicles in adjacent lane.

Bike Lane Typical Section

- Lane Width: 5'
- Curb or Graded Shoulder With No Drop
 Off
- Carry Lanes Across All Bridges
- Lane Markings and Signage
- Special Design Features

Types of Bicycle Facilities

Shared Use Path (aka Bike Path)

An off road facility shared by recreational users (i.e. pedestrians, joggers, bicyclists, skaters, & other non motorized vehicles) separated from roadway traffic.

Types of Bicycle Facilities

Share the Road

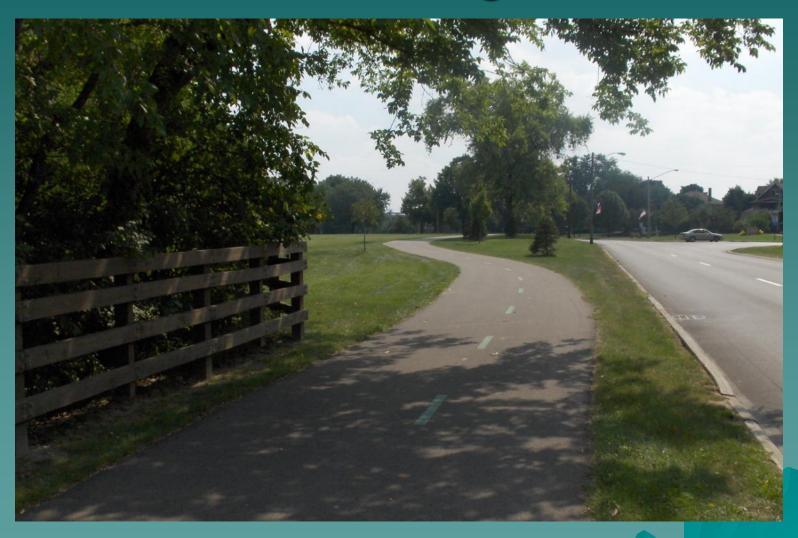
A roadway facility shared by motorized traffic and bicyclists in the same lanes. It is recommended signage and pavement markings be used to remind all users to share the road

Share the Road Typical Section

- Lane Width: Widest Possible
- Curb or Graded Shoulder
- Lane Markings (Sharrows) and Signage
- Special Design Features (Grates)

- Width
 - Path Width = 10'
 - Graded Shoulder = 2'
 - Bridge or Tunnel Width = 14'
- Cross Slope
 - Path Slope = 2% pref., 3% max
 - ◆No crown is preferred
 - Graded Shoulder = 12:1 pref., 6:1
 max

- Horizontal Clearance
 - Obstructions: 3' desired, 2' min.
 - Separation from Roadway: 5' or Barrier
 - Steep Embankment (> 3:1): 5'
- Vertical Clearance
 - 10' desired, 8' min.


- Pavement Composition
 - Design for expected emergency, law enforcement, & maintenance vehicles
 - ODOT commercial drive design is recommended

Horizontal Alignment

The criteria established in the ASHTO and FHWA publications establish the threshold for safety in design. Also remember that an aesthetically pleasing and enjoyable facility is most desirable.

Horizontal Alignment

- Maximum length of steep profile grades
 - AASHTO page 70

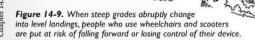
Grade

Grades on shared use paths should be kept to a minimum, especially on long inclines. Grades greater than 5 percent are undesirable because the ascents are difficult for many bicyclists to climb and the descents cause some bicyclists to exceed the speeds at which they are competent or comfortable. On some shared use paths, where terrain dictates, designers may need to exceed the 5 percent grade recommended for bicycles for some short sections. As a general guide, the following grade restrictions and grade lengths are suggested:*

5-6%	for up to 240 m (800 ft)
7%	for up to 120 m (400 ft)
8%	for up to 90 m (300 ft)
9%	for up to 60 m (200 ft)
10%	for up to 30 m (100 ft)
11+%	for up to 15 m (50 ft)

- Maximum length of steep profile grades
 - FHWA page 16-5

If steeper segments are incorporated into the shared-use path, the total running grade that exceeds 8.33 percent should be less than 30 percent of the total trail length. In addition, it is essential that the lengths of the steep sections are minimized and are free of other access barriers. Negotiating a steep grade requires considerable effort. Users should not be required to exert additional energy to simultaneously deal with other factors, such as steep cross slopes and change in vertical levels. When designing maximum grade segments, the following recommendations should be used:


- 8.3 percent for a maximum of 61.0 m (200 ft):
- · 10 percent for a maximum of 9.14 m (30 ft); and

· 12.5 percent for a maximum of 3.05 m (10 ft).

Although the recommended maximum grades are similar to those recommended in the 1999 AASHTO Guide for the Development of Bicycle Facilities, the maximum distances are significantly shorter.

Near the top and bottom of the maximum grade segments, the grade should gradually transition to less than 5 percent. In addition, rest intervals should be provided within 7.6 m (25 ft) of the top and bottom of a maximum grade segment. Rest intervals may be located on the shared-use path but should ideally be located adjacent to the path for the safety of all users (see Section 14.5.2). Well-designed rest intervals should have the following characteristics:

- Grades that do not exceed 5 percent;
- · Cross slopes on paved surfaces that do not exceed 2 percent and cross slopes on non-paved surfaces that do not exceed 5 percent;

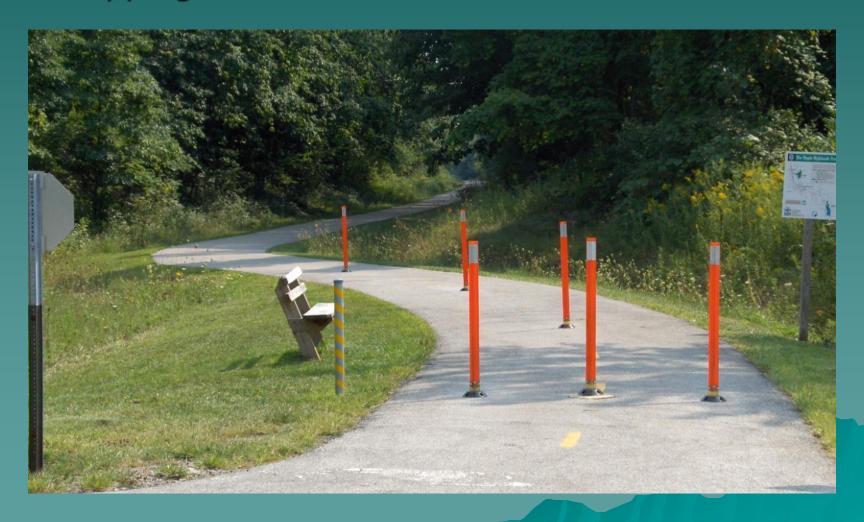
Maximum length of steep profile grades

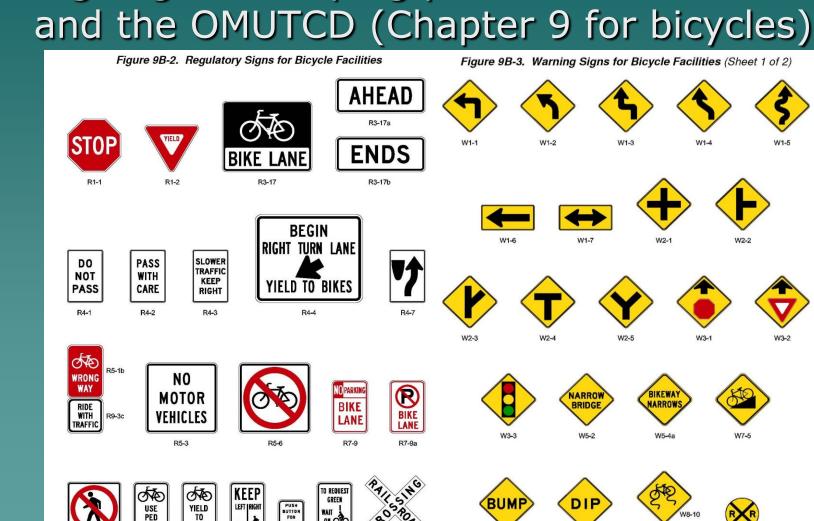
```
5\% < \text{Grade} \le 6\% up to 800ft 6\% < \text{Grade} \le 7\% up to 400ft 7\% < \text{Grade} \le 8\% up to 300ft 8\% < \text{Grade} \le 8.33\% up to 200ft * 8.33\% < \text{Grade} \le 10\% up to 30ft * 10\% < \text{Grade} \le 12.5\% up to 10ft *
```

- Maximum length of steep profile grades
 - Exception: when the path is adjacent to a roadway, it can follow the roadway profile.

- ◆ ADA (Americans with Disabilities Act)
- Curb Ramps
 - Provide truncated domes

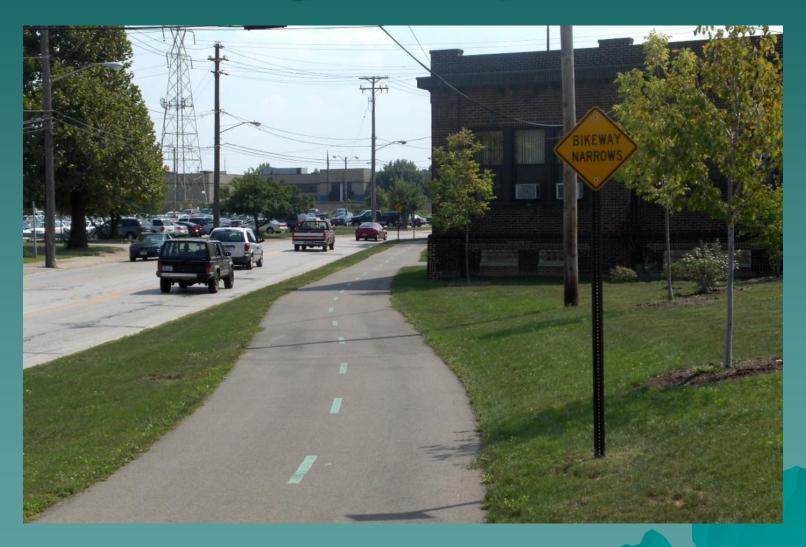
- ADA (Americans with Disabilities Act)
- Curb Ramps
 - Provide truncated domes
- Accessibility
 - The trail (shared use path) is considered a "facility."
 - Access to the "facility" is subject to the ADAAG (Americans with Disabilities Act Accessibility Guidelines)


◆ Pave drives for at least 10' on each side of the path


Slow down users with geometrics & provide Safe
 Stopping Distance at intersection

Slow down users with geometrics & provide Safe
 Stopping Distance at intersection

Signing and striping per AASHTO manual



Design Exceptions

- The design exception documents the sound engineering decisions which have been made to optimize a situation and account for the safety of the users
- Prepare in accordance with ODOT Location
 & Design Manual, Vol. 1, section 105
- Submit with letter of concurrence from the Local Public Agency (owner & maintaining agency)
- Design standards that are "advisable" or "recommended" generally do not require a design exception

Design Exceptions

Design Exceptions

Other Design Considerations

- Account for post construction clean up in the bid, especially on urban trails
- Design bridges for emergency and maintenance vehicle loading
- Construction
 - Construction equipment loading
 - ◆ Soils investigation
 - Staging areas
- Utilities within Railroad Corridors
 - Petroleum pipelines
 - Fiber optic lines

Design Summary

- Design
 - Employ Common Sense
 - Always keep the safety of the user as your foremost priority
 - Design as if your family will be using the facility

QUESTIONS?

John M. Motl

216-584-2085

john.motl@dot.state.oh.us